
Data Structures and Abstractions

Sets &
Maps

Lecture 6

Sets

• By definition, Sets are unordered collections of data.
– A = {2, 1}
– B = {1, 2, 2, 1, 8/4}
– C = {x: x2 – 3x + 2 = 0}
– Note that A = B = C i.e. the sets above are equal to each other [1]

• They are used in maths as well as in many other fields.
• But in the computing domain, there are some variations in the way sets are dealt

with.
– Some sets can contain the actual data values, whilst others only keep a record

of the presence or absence of data values. STL Bitsets
– Elements of a set may not be repeated – a common variation [2]. If repeated

elements are needed, then a multiset or bag is used. STL multiset
– A set is explicitly defined to be unordered, but some implementations require

ordering for efficiency reasons [3]. The STL set is an associative container and
in STL associative containers are ordered.

– The last two variations break the Set abstraction but STL designers decided
that is fine so sets and multisets are provided. [3]

Sets

• There are some unique operations for sets:

– subset

– union

– intersection

– difference

– element

Subset

• Set B is a subset of Set A if all elements in B
are also elements of A.

• Example 1:

if A = {a, b, c, d, g} and B = {c, g}

then B is a subset of A.

• Example 2:

if A = {a, b, c, d, g} and B = {c, g, u, w}

then B is not a subset of A.

A

B

A

B

Subset Animation [1]

1 4 6 9 11 7812 24

1 4 6 9 13

subset = truefalse

END

Subset Pseudo-code

IsSubsetOf (other)[1]

Boolean subset = true

WHILE more elements in this set AND

more elements in the other set AND

subset = true

IF this element = other element

Get next element from each set

ELSE IF this element < other element

subset = false

ELSE

Get next element from other set

ENDIF

ENDWHILE

IF more elements in this set

subset = false

ENDIF

END IsSubsetOf

Union (or, ||)

• The union of Set A and Set B is the collection
containing all elements that are in either of
them, removing double ups. [1]

• For example:

if A = {a, b, c, d, g} and B = {c, g, u, w}

then C = A or B = {a, b, c, d, g, u, w}

• C is shown in yellow: A

B

Union Animation

1 4 6 9 11 7812 24

1 4 6 9 13

1 4 6 9 11 2412 13 78newSet

END

Union Pseudo-code
Union (other, newSet) [1]

WHILE more elements in this set AND
more elements in the other set

IF this element = other element
Add this element into newSet
Get next element from each set

ELSE IF this element < other element
Add this element to newSet
Get next element from this set

ELSE
Add other element to newSet
Get next element from other set

ENDIF
ENDWHILE

WHILE more elements in this set
Add this element to newSet
Get next element from this set

ENDWHILE

WHILE more elements in other set
Add other element to newSet
Get next element from other set

ENDWHILE

END Union [2]

Intersection (and, &&)

• The intersection of Set A and Set B is the
collection containing all elements that
appear in both of them.

• For example:

if A = {a, b, c, d, g} and B = {c, g, u, w}

then C = A and B = {c, g}

• C is shown in yellow:
A

B

Intersection Animation

1 4 6 9 11 7812 24

1 4 6 9 13

1 4 6 9newSet

END

Intersection Pseudo-code

Intersection (other, newSet) [1]

WHILE more elements in this set AND
more elements in the other set

IF this element = other element
Add this element into newSet
Get next element from each set

ELSE IF this element < other element
Get next element from this set

ELSE
Get next element from other set

ENDIF
ENDWHILE

END Intersecton

Difference (-)

• The difference of Set B from Set A is the
collection containing all elements that are in
A but not in B.

• For example:

if A = {a, b, c, d, g} and B = {c, g, u, w}

then C = A - B = {a, b, d}

• C is shown in yellow:
B

A

Difference Animation

1 4 6 9 11 7812 24

1 4 6 9 13

11 2412 78newSet

END

Difference Pseudo-code

Difference(other, newSet) [1]

WHILE more elements in this set AND

more elements in the other set

IF this element = other element

Get next element from each set

ELSE IF this element < other element [2]

Add this element to newSet

Get next element from this set

ELSE

Get next element from other set

ENDIF

ENDWHILE

WHILE more elements in this set

Add this element to newSet

Get next element from this container

ENDWHILE

END Difference

The STL Set

• There is an STL set in C++.

• It requires the <set> header file.

• As for the others it is declared using:
typedef set<int> IntSet;

IntSet aset;

• The best place to go for information is (again
as before):

http://www.cppreference.com/cppset/index.html

http://www.cppreference.com/cppset/index.html

STL Set Methods [1]

aset.clear() Empties the set

aset.empty() Returns true if the set is empty

aset.begin() Returns an iterator to the first element in the set

aset.end() Returns an iterator to past the end of the set

aset.erase() Erase elements from the set

aset.find() Find elements in the set

aset.insert() Insert elements into the set

aset.size() Returns the size of the set

aset.swap() Swaps the contents of two sets

Set Algorithms

• For reasons of general utility, routines that could have been placed in the STL
set class were placed in the algorithm class:
set_difference(set1.begin(), set1.end(),

set2.begin(), set2.end());

set_intersection(set1.begin(), set1.end(),
set2.begin(), set2.end());

set_union(set1.begin(), set1.end(),
set2.begin(), set2.end());

• These should have been operations on sets, because it would have been
intuitive.
– Or (preferred) as helper functions available when #include <set> (What is the

Open-closed principle?) [1]

• As these routines have general utility, they can applied to other linear data
structures like vectors. This approach can be argued to be good, as re-use
of code is happening.

• And there is no subset but a subset set helper function can be written using
algorithm’s includes or set::find() function.

// Do the set difference using the insert iterator

set_difference(set1.begin(), set1.end(),

set2.begin(), set2.end(), resultItr);

• An abstract representation could have operator-(..) defined, so that:
resultSet = set1 – set2

• For this reason—unless the task is trivial—the STL set needs to be
encapsulated or a helper operator/function is provided.

– Prefer the helper operator/function as this means the least amount to code for a
given functionality.

– The helper operator or function uses only the set’s public interface.

Readings

• Textbook: Standard Template Library, section on
Associative containers relating to set and
multiset.

• Library EReserve: Preiss, Data structures and
algorithms with object-oriented design, Chapter
12

• http://www.cplusplus.com/reference/stl/

• http://en.cppreference.com/w/cpp/container/set

• http://en.cppreference.com/w/Main_Page

http://www.cplusplus.com/reference/stl/
http://en.cppreference.com/w/cpp/container/set
http://en.cppreference.com/w/Main_Page

Data Structures and Abstractions

MAPS

Note 1 (legacy code only)
• When you compile some STL code in VC++ you might get a warning: [1]

ICT283\Code\Sets\SetDifference.cpp(59) : warning C4786:

'std::pair<std::_Tree<int,int,std::set<int,std::less<int>,std::allocat

or<int>>::_Kfn,std::less<int>,std::allocator<int>

>::const_iterator,std::_Tree<int,int,std::set<int,std::less<int>,std::

allocator<int>>::_Kfn,std::less<int>,std::allocator<int>

>::const_iterator>' : identifier was truncated to '255' characters in

the debug information

• This is the only warning you can ignore completely (a debug identifier)

• If it really annoys you, then add the following code before the includes in
the file that is generating the warning:

#pragma warning (disable : 4786)

• Do not disable any other warning!!
– DO NOT JUST DISABLE THE WARNING IF YOU ARE NOT GETTING THE WARNING.

– Warning is only on older implementations of Visual C++, so you are not likely to see it
now. If you do see it, please let me know. As we

– Legacy code and compilers may generate this issue, so just for noting

– You wouldn’t see this error in the work you are doing in this unit, but be aware of
issues like this with legacy code and older compilers.

Note 2 (relevant now)
• If you get an error message such as:

ICT283\Code\Map\Map.cpp(57) : error C2440: 'initializing' : cannot convert from
'class std::_Tree<class std::basic_string<char,struct
std::char_traits<char>,class std::allocator<char> >,struct std::pair<class
std::basic

No constructor could take the source type, or constructor overload resolution
was ambiguous.

• Then it almost always means that you are passing an object as a const reference to a function that uses
iterators. Iterators expect references not const references. So, for example, the code below would
probably generate this error: [1]
void DoSomething (const IntSet &aset) //IntSet is some type with an iterator

// typically, this type has had a typedef

// typedef set<int> IntSet;

{

IntSet::iterator itr = aset.begin(); // itr can be used to modify - error

}

• To solve it, use a const_iterator, instead of an iterator: [2]

void DoSomething (const IntSet &aset)

{

IntSet::const_iterator itr = aset.begin();

}

Maps
• An association (pairing) is a connection between two things, for example

the word “sanity” (key) is associated with the definition (value) “the state
of having a normal healthy mind”*

• A dictionary or map is then a collection of key-value associations [1].

• The first part of the pair is often called a key.

• The data in maps is inserted, deleted and found using the key. So key
needs to be unique but value need not be. [2]

• For example, if one had a map that was an English dictionary, then we
would expect to be able to retrieve the definition of sanity using
something like:

dictionary.GetDefinition (“sanity”);

or even

dictionary[“sanity”];

* Australian Dictionary, Collins, 2005

The STL Map

• The STL map is a very nice template indeed.
• The declaration requires two data types, the first

being the key and the second being the data to
be stored in association with the key. [1]

• For example, consider a class taking a vote on
who should be the class president. We want to
associate names with an integer number of votes:
#include <map>
...
map<string, int> Popularity;
...
Popularity pop;

A Simple Map Program

• // Normal comments up here

• #include <map>

• #include <iostream>

• #include <iomanip>

• #include <string>

• using namespace std; // don’t do this – use the approach in the code that is provided separately.

• //--

• const string END = “end”; // string object

• //--

• typedef map<string,int> Popularity;

• typedef Popularity::iterator PopItr;

• typedef Popularity::const_iterator PopCItr; // see textbook chapter on STL

It can be really
useful to define
an iterator for
each STL type

you use

• //--

• void AddData (Popularity &pop);
• void Output (const Popularity &pop);

• //--

• int main ()
• {
• Popularity pop;

• AddData (pop);
• Output (pop);

• cout << endl;
• return 0;
• }

• //--

• void AddData (Popularity &pop)
• {
• string name;

• // Prime the while loop
• cout << "Enter vote name, or “ << END << “ to finish: ";
• getline (cin, name);

• while (name != "end") // is this comparison efficient? [1]
• {
• // If they are part of the map already, this adds 1
• // to their score. If they are not, it puts them
• // in the map and gives them a score of 1.
• // see missing code in the notes section [2]
•

• cout << "Enter vote name, or 'end' to finish: ";
• getline (cin, name);
• }
• }

• //--

• void Output (const Popularity &pop)
• {
• PopCItr winner = pop.begin(); // set a temp winner as the first item

• // For each entry in the map
• for (PopCItr itr = pop.begin(); itr != pop.end(); itr++)
• {
• // Output the first and second parts of the pair (association)
• cout << setw(20) << itr->first << “ : " << itr->second << endl;

• // Now check if this person should be the winner
• if (winner->second < itr->second) // compare the value [1]
• {
• winner = itr;
• }
• }

• // Output the winner
• cout << endl << "The new class president is " << winner->first
• << " with " << winner->second << " votes" << endl; [2]
• }

• //--

Readings

• Textbook: Chapter on Standard Template
Library.

• Map: https://en.cppreference.com/w/cpp/container/map

• Multimap: https://en.cppreference.com/w/cpp/container/multimap

https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/multimap

